Software Development
Making More Complicated Programs!

Tim Jackman

BU Summer Challenge

July 11th, 2025

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025

@ So far we've seen how to use the basic Java language features to
create rudimentary programs.

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 2

@ So far we've seen how to use the basic Java language features to
create rudimentary programs.

@ Real-life software applications are a lot more complex than what
we've seen

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 2

@ So far we've seen how to use the basic Java language features to
create rudimentary programs.

@ Real-life software applications are a lot more complex than what
we've seen

@ May involve many classes and components working together to create
a complex program

Tim Jackman (BU Summer Challenge) Software Development

July 11th, 2025 2

@ So far we've seen how to use the basic Java language features to
create rudimentary programs.

@ Real-life software applications are a lot more complex than what
we've seen

@ May involve many classes and components working together to create
a complex program

@ Today we are going to learn about some of the key concepts for
Object-Oriented Design

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 2

@ So far we've seen how to use the basic Java language features to
create rudimentary programs.

@ Real-life software applications are a lot more complex than what
we've seen

@ May involve many classes and components working together to create
a complex program

@ Today we are going to learn about some of the key concepts for
Object-Oriented Design

e OOD is an approach for creating software using the concepts of classes
and objects

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 2

@ So far we've seen how to use the basic Java language features to
create rudimentary programs.

@ Real-life software applications are a lot more complex than what
we've seen

@ May involve many classes and components working together to create
a complex program

@ Today we are going to learn about some of the key concepts for
Object-Oriented Design
e OOD is an approach for creating software using the concepts of classes
and objects
e Java is designed to be used for Object-Oriented Program

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 2

@ So far we've seen how to use the basic Java language features to
create rudimentary programs.

Real-life software applications are a lot more complex than what
we've seen

May involve many classes and components working together to create
a complex program

Today we are going to learn about some of the key concepts for
Object-Oriented Design

e OOD is an approach for creating software using the concepts of classes
and objects
e Java is designed to be used for Object-Oriented Program

@ We will also quickly see some advanced Java features that are useful

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 2

Encapsulation

@ We've already touched on one aspect of Encapsulation with access
modifiers

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 3

Encapsulation

@ We've already touched on one aspect of Encapsulation with access
modifiers

@ Encapsulation is the idea that data should be bundled with the
methods that operate on it

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 3

Encapsulation

@ We've already touched on one aspect of Encapsulation with access
modifiers

@ Encapsulation is the idea that data should be bundled with the
methods that operate on it

@ Using access modifiers allow us to sensibly control how data can be
used in our program, to keep things from getting messy

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025

Encapsulation

@ We've already touched on one aspect of Encapsulation with access
modifiers

@ Encapsulation is the idea that data should be bundled with the
methods that operate on it

@ Using access modifiers allow us to sensibly control how data can be
used in our program, to keep things from getting messy

o Class: “l am responsible for my data, if you want to use it you have to
do it my way so nothing goes wrong”

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 3

Encapsulation

@ We've already touched on one aspect of Encapsulation with access
modifiers

@ Encapsulation is the idea that data should be bundled with the
methods that operate on it

@ Using access modifiers allow us to sensibly control how data can be
used in our program, to keep things from getting messy
o Class: “l am responsible for my data, if you want to use it you have to
do it my way so nothing goes wrong"
@ Aligns with the fundamental problem-solving technique: Breaking It
Down Into Smaller Parts

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 3

Composition

@ Imagine you wanted to repair a complicated machine like a car.
Would you start trying to rebuild it all at once?

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 4

Composition

@ Imagine you wanted to repair a complicated machine like a car.
Would you start trying to rebuild it all at once?

o We'd start by replacing the wheels, repairing the engine, etc.

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 4

Composition

@ Imagine you wanted to repair a complicated machine like a car.
Would you start trying to rebuild it all at once?

o We'd start by replacing the wheels, repairing the engine, etc.

@ We design programs by breaking the problem apart and building basic
classes to represent the basic data we need

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 4

Composition

@ Imagine you wanted to repair a complicated machine like a car.
Would you start trying to rebuild it all at once?

o We'd start by replacing the wheels, repairing the engine, etc.

@ We design programs by breaking the problem apart and building basic
classes to represent the basic data we need

@ We then compose these base classes to build more complicated data
types

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 4

Inheritance

o We've seen how classes are blueprints for objects and how they
bundle what's the same about two objects of the same type

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 5

Inheritance

o We've seen how classes are blueprints for objects and how they
bundle what's the same about two objects of the same type

@ Can we do the same thing with two classes that share similarities?

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 5

Inheritance

o We've seen how classes are blueprints for objects and how they
bundle what's the same about two objects of the same type

@ Can we do the same thing with two classes that share similarities?

@ Imagine we've designed a Car class and a Truck class. Both may have
similar methods like drive () or similar fields like fuel-efficiency

Tim Jackman (BU Summer Challenge) Software Development

July 11th, 2025 5

Inheritance

o We've seen how classes are blueprints for objects and how they
bundle what's the same about two objects of the same type

@ Can we do the same thing with two classes that share similarities?

@ Imagine we've designed a Car class and a Truck class. Both may have
similar methods like drive () or similar fields like fuel-efficiency

@ Java allows us to create a “parent” class Vehicle that bundles the
shared fields/methods Car and Truck

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 5

Inheritance

o We've seen how classes are blueprints for objects and how they
bundle what's the same about two objects of the same type

@ Can we do the same thing with two classes that share similarities?
@ Imagine we've designed a Car class and a Truck class. Both may have
similar methods like drive () or similar fields like fuel-efficiency

@ Java allows us to create a “parent” class Vehicle that bundles the
shared fields/methods Car and Truck

o We write these fields/methods in the superclass (parent) class and any
subclass (child) class inherits them automatically

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 5

Inheritance

o We've seen how classes are blueprints for objects and how they
bundle what's the same about two objects of the same type

@ Can we do the same thing with two classes that share similarities?
@ Imagine we've designed a Car class and a Truck class. Both may have
similar methods like drive () or similar fields like fuel-efficiency

@ Java allows us to create a “parent” class Vehicle that bundles the
shared fields/methods Car and Truck

o We write these fields/methods in the superclass (parent) class and any
subclass (child) class inherits them automatically

@ This idea is called Inheritance and allows us to clearly and efficiently
reuse code

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 5

Inheritance In Java

@ We use the keyword extends to declare a class is a subclass of
another

keAndModel ;

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025

Inheritance In Java

@ We use the keyword extends to declare a class is a subclass of
another

keAndModel ;

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025

Inheritance In Java

@ We use the keyword extends to declare a class is a subclass of
another

@ protected is an access keyword that means only this class or its
subclasses

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025

Inheritance In Java

@ We use the keyword extends to declare a class is a subclass of
another

@ protected is an access keyword that means only this class or its
subclasses

@ Subclasses do not inherit private fields

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025

Inheritance In Java

@ We use the keyword extends to declare a class is a subclass of
another

@ protected is an access keyword that means only this class or its
subclasses

@ Subclasses do not inherit private fields

@ Subclasses can override (redefine) inherited fields/methods

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025

Inheritance In Java

@ We use the keyword extends to declare a class is a subclass of
another

@ protected is an access keyword that means only this class or its
subclasses

@ Subclasses do not inherit private fields
@ Subclasses can override (redefine) inherited fields/methods

@ Subclasses can call parent methods with super

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025

Inheritance in Java

@ Classes can only extend one class

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 7

Inheritance in Java

@ Classes can only extend one class
@ By default, every class extends the Object class (except Object)

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 7

Inheritance in Java

@ Classes can only extend one class
@ By default, every class extends the Object class (except Object)
@ Every class has toString(), equals()

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 7

Inheritance in Java

Classes can only extend one class
By default, every class extends the Object class (except Object)
Every class has toString(), equals()

Object has a default implementation that might not be useful, some
classes override these some don't

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 7

Interfaces

@ Superclasses are blueprints for other classes but are very detailed

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 8

Interfaces

@ Superclasses are blueprints for other classes but are very detailed

e They provide their own implementations with the idea their subclasses
will use them

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 8

Interfaces

@ Superclasses are blueprints for other classes but are very detailed

e They provide their own implementations with the idea their subclasses
will use them

@ Does it make sense to have a Vehicle object? A Vehicle is an abstract
concept?
o Cars are concrete, Vehicles are not

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 8

Interfaces

@ Superclasses are blueprints for other classes but are very detailed

o They provide their own implementations with the idea their subclasses
will use them

@ Does it make sense to have a Vehicle object? A Vehicle is an abstract
concept?
o Cars are concrete, Vehicles are not

@ What about if we want to just give a “rough sketch” of a class?

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 8

Interfaces

@ Superclasses are blueprints for other classes but are very detailed

o They provide their own implementations with the idea their subclasses
will use them

@ Does it make sense to have a Vehicle object? A Vehicle is an abstract
concept?
o Cars are concrete, Vehicles are not
@ What about if we want to just give a “rough sketch” of a class?

o Anything following this “rough sketch” should have these methods that
do these things

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 8

Interfaces

@ Superclasses are blueprints for other classes but are very detailed

o They provide their own implementations with the idea their subclasses
will use them

@ Does it make sense to have a Vehicle object? A Vehicle is an abstract
concept?
o Cars are concrete, Vehicles are not
@ What about if we want to just give a “rough sketch” of a class?

o Anything following this “rough sketch” should have these methods that
do these things

e The implementing class following the sketch is responsible for ALL
implementation

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 8

Interfaces

@ Superclasses are blueprints for other classes but are very detailed
e They provide their own implementations with the idea their subclasses
will use them
@ Does it make sense to have a Vehicle object? A Vehicle is an abstract
concept?
o Cars are concrete, Vehicles are not
@ What about if we want to just give a “rough sketch” of a class?
o Anything following this “rough sketch” should have these methods that

do these things
e The implementing class following the sketch is responsible for ALL
implementation

@ In Java these are called interfaces

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 8

Interfaces in Java

class Car implements Vehicle {

) {}
{}

nts Vehicle {

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 9

Interfaces in Java

@ We use the implements keyword to declare a class implements an
interface

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 10

Interfaces in Java

@ We use the implements keyword to declare a class implements an
interface

@ Classes can implement as many interfaces as they want

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 10

Interfaces in Java

@ We use the implements keyword to declare a class implements an
interface

@ Classes can implement as many interfaces as they want

@ The power of interfaces is they allow us to use implementing classes
like a black-box

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 10

Interfaces in Java

@ We use the implements keyword to declare a class implements an
interface

@ Classes can implement as many interfaces as they want

@ The power of interfaces is they allow us to use implementing classes
like a black-box

@ In particular, we can write methods using interfaces

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 10

Interfaces in Java

@ We use the implements keyword to declare a class implements an
interface

@ Classes can implement as many interfaces as they want

@ The power of interfaces is they allow us to use implementing classes
like a black-box

@ In particular, we can write methods using interfaces
@ Our code only get access to the methods of the interface

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 10

Interfaces in Java

@ We use the implements keyword to declare a class implements an
interface

@ Classes can implement as many interfaces as they want

@ The power of interfaces is they allow us to use implementing classes
like a black-box

@ In particular, we can write methods using interfaces

@ Our code only get access to the methods of the interface
e But it will work with any of the classes implementing the interface

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 10

Interfaces in Java

@ We use the implements keyword to declare a class implements an
interface

@ Classes can implement as many interfaces as they want
@ The power of interfaces is they allow us to use implementing classes
like a black-box

@ In particular, we can write methods using interfaces
@ Our code only get access to the methods of the interface
e But it will work with any of the classes implementing the interface
o We can freely swap around our code we're using without breaking
anything!

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 10

Generics

@ Interfaces allow us to write somewhat general code that would work
with any implementing class

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 11

Generics

@ Interfaces allow us to write somewhat general code that would work
with any implementing class

@ But what if we write a truly general piece of code that would work
with any class

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 11

Generics

@ Interfaces allow us to write somewhat general code that would work
with any implementing class

@ But what if we write a truly general piece of code that would work
with any class

@ We could cast everything up to Objects but we lose a lot of
information (no fields, no methods)

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 11

Generics

@ Interfaces allow us to write somewhat general code that would work
with any implementing class

@ But what if we write a truly general piece of code that would work
with any class

@ We could cast everything up to Objects but we lose a lot of
information (no fields, no methods)

@ For example, we implemented IntegerLL in the homework. But the
code would be the same for StringLL, or FileLL, or CarLL

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 11

Generics

@ Interfaces allow us to write somewhat general code that would work
with any implementing class

@ But what if we write a truly general piece of code that would work
with any class

@ We could cast everything up to Objects but we lose a lot of
information (no fields, no methods)

@ For example, we implemented IntegerLL in the homework. But the
code would be the same for StringLL, or FileLL, or CarLL

@ To solve this problem in programming, we use the concept of
generics, where we treat the Type like an input in our class definition

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 11

Generics in Java

T data;
LL<LT> next;

StringlLinkedList = new
IntegerlinkedlList

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 12

Building Software

@ How do we use these tools to build complex programs?

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 13

Building Software

@ How do we use these tools to build complex programs?

@ Depending on your application, you might use a different software
architectural pattern

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 13

Building Software

@ How do we use these tools to build complex programs?

@ Depending on your application, you might use a different software
architectural pattern

@ These are designs for how to tackle a specific problem

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 13

Building Software

How do we use these tools to build complex programs?

Depending on your application, you might use a different software
architectural pattern

These are designs for how to tackle a specific problem

For example, imagine you want to implement a user interface, how
should you structure your code?

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 13

Model-View-Controller (MVC)

@ MVC is a pattern for Ul that separates the program into three pieces:
Model, View, and Controller which each do a different task

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 14

Model-View-Controller (MVC)

@ MVC is a pattern for Ul that separates the program into three pieces:
Model, View, and Controller which each do a different task

@ The Model is the code controls the internal data of the program

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 14

Model-View-Controller (MVC)

@ MVC is a pattern for Ul that separates the program into three pieces:
Model, View, and Controller which each do a different task

@ The Model is the code controls the internal data of the program

@ The View is code that controls what the program looks like

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 14

Model-View-Controller (MVC)

MVC is a pattern for Ul that separates the program into three pieces:
Model, View, and Controller which each do a different task

The Model is the code controls the internal data of the program

The View is code that controls what the program looks like

@ The Controller is the code that takes the user input and

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 14

Model-View-Controller (MVC)

MVC is a pattern for Ul that separates the program into three pieces:
Model, View, and Controller which each do a different task

@ The Model is the code controls the internal data of the program
@ The View is code that controls what the program looks like

@ The Controller is the code that takes the user input and
°

These three components are separated from one another but interact
in specific ways

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025 14

Model-View-Controller (MVC)

@ MVC is a pattern for Ul that separates the program into three pieces:

Model, View, and Controller which each do a different task

The Model is the code controls the internal data of the program
The View is code that controls what the program looks like

The Controller is the code that takes the user input and

These three components are separated from one another but interact
in specific ways

(MODEL

UPDATES MANIPULATES
VIEW CONTROLLER
\
% .::/
" or,
N /

USER

Tim Jackman (BU Summer Challenge) Software Development July 11th, 2025

14

